On Computing the Discrete Fourier Transform

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On computing the Discrete Fourier Transform.

New algorithms for computing the Discrete Fourier Transform of n points are described. For n in the range of a few tens to a few thousands these algorithms use substantially fewer multiplications than the best algorithm previously known, and about the same number of additions.

متن کامل

The Discrete Fourier Transform∗

1 Motivation We want to numerically approximate coefficients in a Fourier series. The first step is to see how the trapezoidal rule applies when numerically computing the integral (2π) −1 2π 0 F (t)dt, where F (t) is a continuous, 2π-periodic function. Applying the trapezoidal rule with the stepsize taken to be h = 2π/n for some integer n ≥ 1 results in (2π) −1 2π 0 F (t)dt ≈ 1 n n−1 j=0 Y j , ...

متن کامل

The Discrete Fourier Transform

Disclaimer: These notes are intended to be an accessible introduction to the subject, with no pretense at completeness. In general, you can find more thorough discussions in Oppenheim's book. Please let me know if you find any typos. In this lecture, we discuss the Discrete Fourier Transform (DFT), which is a fourier representation for finite length signals. The main practical importance of thi...

متن کامل

Discrete Fourier Transform on Multicores

This paper gives an overview on the techniques needed to implement the discrete Fourier transform (DFT) efficiently on current multicore systems. The focus is on Intel compatible multicores but we also discuss the IBM Cell, and briefly, graphics processing units (GPUs). The performance optimization is broken down into three key challenges: parallelization, vectorization, and memory hierarchy op...

متن کامل

Discrete Convolution and the Discrete Fourier Transform

Discrete Convolution First of all we need to introduce what we might call the “wraparound” convention. Because the complex numbers wj = e i 2πj N have the property wj±N = wj, which readily extends to wj+mN = wj for any integer m, and since in the discrete Fourier context we represent all N -dimensional vectors as linear combinations of the Fourier vectors Wk whose components are wkj , we make t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1978

ISSN: 0025-5718

DOI: 10.2307/2006266